Below is a list of references and disclaimers for our web and in-app content.

*The Abbott Glucose Sport Biosensor is not intended for medical use. It is not intended for use in screening, diagnosis, treatment, cure, mitigation, prevention, or monitoring of diseases, including diabetes.Product is not for sale in the US and is only available in select countries. Compatibility of the Biosensor – Abbott Glucose Sport Biosensor is compatible with the Supersapiens app.

*Please discuss with your physician prior to starting any experiments.

  1. Coyle EF. Substrate utilization during exercise in active people. Am J Clin Nutr. 1995 Apr;61(4 Suppl):968S-979S. doi: 10.1093/ajcn/61.4.968S. PMID: 7900696.
  2. Coyle EF, Coggan AR, Hemmert MK, Ivy JL. Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. J Appl Physiol (1985). 1986 Jul;61(1):165-72. doi: 10.1152/jappl.1986.61.1.165. PMID: 3525502.
  3. Mata F, Valenzuela PL, Gimenez J, Tur C, Ferreria D, Domínguez R, Sanchez-Oliver AJ, Martínez Sanz JM. Carbohydrate Availability and Physical Performance: Physiological Overview and Practical Recommendations. Nutrients. 2019 May 16;11(5):1084. doi: 10.3390/nu11051084. PMID: 31100798; PMCID: PMC6566225.
  4. Wyatt, P., Berry, S.E., Finlayson, G. et al. Postprandial glycaemic dips predict appetite and energy intake in healthy individuals. Nat Metab 3, 523–529 (2021).
  5. Papachristoforou E, Lambadiari V, Maratou E, Makrilakis K. Association of Glycemic Indices (Hyperglycemia, Glucose Variability, and Hypoglycemia) with Oxidative Stress and Diabetic Complications. J Diabetes Res. 2020 Oct 12;2020:7489795. doi: 10.1155/2020/7489795. PMID: 33123598; PMCID: PMC7585656.
  6. Febbraio MA, Chiu A, Angus DJ, Arkinstall MJ, Hawley JA. Effects of carbohydrate ingestion before and during exercise on glucose kinetics and performance. J Appl Physiol (1985). 2000 Dec;89(6):2220-6. doi: 10.1152/jappl.2000.89.6.2220. PMID: 11090571.
  7. Baur DA, Saunders MJ. Carbohydrate supplementation: a critical review of recent innovations. Eur J Appl Physiol. 2021 Jan;121(1):23-66. doi: 10.1007/s00421-020-04534-y. Epub 2020 Oct 27. PMID: 33106933.
  8. Ørtenblad N, Westerblad H, Nielsen J. Muscle glycogen stores and fatigue. J Physiol. 2013 Sep 15;591(18):4405-13. doi: 10.1113/jphysiol.2013.251629. Epub 2013 May 7. PMID: 23652590; PMCID: PMC3784189.
  9. Wasserfurth, P., Palmowski, J., Hahn, A. et al. Reasons for and Consequences of Low Energy Availability in Female and Male Athletes: Social Environment, Adaptations, and Prevention. Sports Med - Open 6, 44 (2020).
  10. Lauren M. McCall, Kathryn E. Ackerman,Endocrine and metabolic repercussions of relative energy deficiency in sport, Current Opinion in Endocrine and Metabolic Research, Volume 9, 2019, Pages 56-65, ISSN 2451-9650,
  11. Logue DM, Madigan SM, Melin A, Delahunt E, Heinen M, Donnell SM, Corish CA. Low Energy Availability in Athletes 2020: An Updated Narrative Review of Prevalence, Risk, Within-Day Energy Balance, Knowledge, and Impact on Sports Performance. Nutrients. 2020 Mar 20;12(3):835. doi: 10.3390/nu12030835. PMID: 32245088; PMCID: PMC7146210
  12. Moran, D.S., Heled, Y., Arbel, Y., Israeli, E., Finestone, A.S., Evans, R.K., & Yanovich, R. (2012). Dietary intake and stress fractures among elite male combat recruits. Journal of the International Society of Sports Nutrition, 9, 6. PubMed ID: 22413851 doi:10.1186/1550-2783-9-6
  13. Beck KL, Thomson JS, Swift RJ, von Hurst PR. Role of nutrition in performance enhancement and postexercise recovery. Open Access J Sports Med. 2015 Aug 11;6:259-67. doi: 10.2147/OAJSM.S33605. PMID: 26316828; PMCID: PMC4540168.
  14. Viribay A, Arribalzaga S, Mielgo-Ayuso J, Castañeda-Babarro, Seco-Calvo J, Urdampilleta A. Effects of 120 g/h of Carbohydrates Intake during a Mountain Marathon on Exercise-Induced Muscle Damage in Elite Runners. Nutrients 12(5), 1367, 2020. doi: 10.3390/nu12051367
  15. Keir DA, Fontana FY, Robertson TC, Murias JM, Paterson DH, Kowalchuk JM, Pogliaghi S. Exercise Intensity Thresholds: Identifying the Boundaries of Sustainable Performance. Med Sci Sports Exerc. 2015 Sep;47(9):1932-40. doi: 10.1249/MSS.0000000000000613. PMID: 25606817.
  16. Allen, H., Coggan, A. R., & McGregor, S. (2019). Training and Racing with a Power Meter. VeloPress.
  17. Ivy JL, Kuo CH. Regulation of GLUT4 protein and glycogen synthase during muscle glycogen synthesis after exercise. Acta Physiol Scand. 1998 Mar;162(3):295-304. doi: 10.1046/j.1365-201X.1998.0302e.x. PMID: 9578375.
  18. Margolis LM, Allen JT, Hatch-McChesney A, Pasiakos SM. Coingestion of Carbohydrate and Protein on Muscle Glycogen Synthesis after Exercise: A Meta-analysis. Med Sci Sports Exerc. 2021 Feb 1;53(2):384-393. doi: 10.1249/MSS.0000000000002476. PMID: 32826640; PMCID: PMC7803445.
  19. Gonzalez, Javier T et al. “Glucose Plus Fructose Ingestion for Post-Exercise Recovery-Greater than the Sum of Its Parts?.” Nutrients vol. 9,4 344. 30 Mar. 2017, doi:10.3390/nu9040344
  20. Jeukendrup, A. A Step Towards Personalized Sports Nutrition: Carbohydrate Intake During Exercise. Sports Med 44, 25–33 (2014).
  21. Vitale, K.; Getzin, A. Nutrition and Supplement Update for the Endurance Athlete: Review and Recommendations. Nutrients 2019, 11, 1289.
  22. Tsintzas K, Williams C. Human muscle glycogen metabolism during exercise. Effect of carbohydrate supplementation. Sports Med. 1998 Jan;25(1):7-23. doi: 10.2165/00007256-199825010-00002. PMID: 9458524.
  23. Ivy JL. Glycogen resynthesis after exercise: effect of carbohydrate intake. Int J Sports Med. 1998 Jun;19 Suppl 2:S142-5. doi: 10.1055/s-2007-971981. PMID: 9694422.
  24. Balsom PD, Gaitanos GC, Söderlund K, Ekblom B. High-intensity exercise and muscle glycogen availability in humans. Acta Physiol Scand. 1999 Apr;165(4):337-45. doi: 10.1046/j.1365-201x.1999.00517.x. PMID: 10350228.
  25. Hargreaves M, Hawley JA, Jeukendrup A. Pre-exercise carbohydrate and fat ingestion: effects on metabolism and performance. J Sports Sci. 2004 Jan;22(1):31-8. doi: 10.1080/0264041031000140536. PMID: 14971431.
  26. Alghannam AF, Gonzalez JT, Betts JA. Restoration of Muscle Glycogen and Functional Capacity: Role of Post-Exercise Carbohydrate and Protein Co-Ingestion. Nutrients. 2018;10(2):253. Published 2018 Feb 23. doi:10.3390/nu10020253
  27. Blaak EE, Antoine JM, Benton D, et al. Impact of postprandial glycaemia on health and prevention of disease. Obes Rev. 2012;13(10):923-984. doi:10.1111/j.1467-789X.2012.01011.x
  28. Zhou J, Li H, Ran X, Yang W, Li Q, Peng Y, Li Y, Gao X, Luan X, Wang W, Jia W. Reference values for continuous glucose monitoring in Chinese subjects. Diabetes Care. 2009 Jul;32(7):1188-93. doi: 10.2337/dc09-0076. Epub 2009 Apr 23. PMID: 19389816; PMCID: PMC2699703.
  29. Shah VN, DuBose SN, Li Z, Beck RW, Peters AL, Weinstock RS, Kruger D, Tansey M, Sparling D, Woerner S, Vendrame F, Bergenstal R, Tamborlane WV, Watson SE, Sherr J. Continuous Glucose Monitoring Profiles in Healthy Nondiabetic Participants: A Multicenter Prospective Study. J Clin Endocrinol Metab. 2019 Oct 1;104(10):4356-4364. doi: 10.1210/jc.2018-02763. PMID: 31127824; PMCID: PMC7296129.
  30. Adams OP. The impact of brief high-intensity exercise on blood glucose levels. Diabetes Metab Syndr Obes. 2013;6:113-122. doi:10.2147/DMSO.S29222
  31. Bantle, J. P., Laine, D. C., Castle, G. W., Thomas, J. W., Hoogwerf, B. J., & Goetz, F. C. (1983). Postprandial Glucose and Insulin Responses to Meals Containing Different Carbohydrates in Normal and Diabetic Subjects. New England Journal of Medicine, 309(1), 7–12. doi:10.1056/nejm198307073090102
  32. Arent SM, Cintineo HP, McFadden BA, Chandler AJ, Arent MA. Nutrient Timing: A Garage Door of Opportunity? Nutrients. 2020; 12(7):1948.
  33. Frayn K.N., 2013. Metabolic Regulation: A Human Perspective, 3rd Edition, 2013. Wiley.
  34. Wang C.,,  Glucose fluctuations in subjects with normal glucose tolerance, impaired glucose regulation and newly diagnosed type 2 diabetes mellitus. Clinical Endocrinology. 76-6, 2012.
  35. Wasserman D.H., Four Grams of Glucose. Am J Physiol Endocrinol Metab. 296-, 2009.
  36. Aronoff, S. L., Berkowitz, K., Shreiner, B., & Want, L. (2004). Glucose Metabolism and Regulation: Beyond Insulin and Glucagon. Diabetes Spectrum, 17(3), 183–190.
  37. Ehrhardt N, Al Zaghal E. Continuous Glucose Monitoring As a Behavior Modification Tool. Clin Diabetes. 2020;38(2):126-131. doi:10.2337/cd19-0037
  38. Colberg SR, Zarrabi L, Bennington L, Nakave A, Thomas Somma C, Swain DP, Sechrist SR. Postprandial walking is better for lowering the glycemic effect of dinner than pre-dinner exercise in type 2 diabetic individuals. J Am Med Dir Assoc. 2009 Jul;10(6):394-7. doi: 10.1016/j.jamda.2009.03.015. Epub 2009 May 21. PMID: 19560716.
  39. Nygaard H, Tomten SE, Høstmark AT. Slow postmeal walking reduces postprandial glycemia in middle-aged women. Appl Physiol Nutr Metab. 2009 Dec;34(6):1087-92. doi: 10.1139/H09-110. PMID: 20029518.
  40. Jonathon A. B. Smith, Mladen Savikj, Parneet Sethi, Simon Platt, Brendan M. Gabriel, John A. Hawley, David Dunstan, Anna Krook, Juleen R. Zierath, and Erik Näslund. Three weeks of interrupting sitting lowers fasting glucose and glycemic variability, but not glucose tolerance, in free-living women and men with obesity. American Journal of Physiology-Endocrinology and Metabolism 2021 321:2, E203-E216
  41. Chang CR, Francois ME, Little JP. Restricting carbohydrates at breakfast is sufficient to reduce 24-hour exposure to postprandial hyperglycemia and improve glycemic variability. Am J Clin Nutr. 2019 May 1;109(5):1302-1309. doi: 10.1093/ajcn/nqy261. PMID: 30968140; PMCID: PMC6499564.
  42. Nishino K, Sakurai M, Takeshita Y, Takamura T. Consuming Carbohydrates after Meat or Vegetables Lowers Postprandial Excursions of Glucose and Insulin in Nondiabetic Subjects. J Nutr Sci Vitaminol (Tokyo). 2018;64(5):316-320. doi: 10.3177/jnsv.64.316. PMID: 30381620.
  43. Ceriello A, Esposito K, Piconi L, Ihnat MA, Thorpe JE, Testa R, Boemi M, Giugliano D. Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes. 2008 May;57(5):1349-54. doi: 10.2337/db08-0063. Epub 2008 Feb 25. PMID: 18299315.
  44. Levitan EB, Song Y, Ford ES, Liu S. Is nondiabetic hyperglycemia a risk factor for cardiovascular disease? A meta-analysis of prospective studies. Arch Intern Med. 2004 Oct 25;164(19):2147-55. doi: 10.1001/archinte.164.19.2147. PMID: 15505129.
  45. Oosthuyse, T., Bosch, A.N. The Effect of the Menstrual Cycle on Exercise Metabolism. Sports Med 40, 207–227 (2010).
  46. Mears SA, Boxer B, Sheldon D, Wardley H, Tarnowski CA, James LJ, Hulston CJ. Sports Drink Intake Pattern Affects Exogenous Carbohydrate Oxidation during Running. Med Sci Sports Exerc. 2020 Sep;52(9):1976-1982. doi: 10.1249/MSS.0000000000002334. PMID: 32168107.
  47. Pfeiffer B, Stellingwerff T, Zaltas E, Jeukendrup AE. Oxidation of solid versus liquid CHO sources during exercise. Med Sci Sports Exerc. 2010 Nov;42(11):2030-7. doi: 10.1249/MSS.0b013e3181e0efc9. PMID: 20404762.
  48. Pfeiffer B, Stellingwerff T, Zaltas E, Jeukendrup AE. CHO oxidation from a CHO gel compared with a drink during exercise. Med Sci Sports Exerc. 2010 Nov;42(11):2038-45. doi: 10.1249/MSS.0b013e3181e0efe6. PMID: 20404763.
  49. Fell, J Marc et al. “Carbohydrate improves exercise capacity but does not affect subcellular lipid droplet morphology, AMPK and p53 signalling in human skeletal muscle.” The Journal of physiology, 10.1113/JP281127. 26 Mar. 2021, doi:10.1113/JP281127
  50. Gonzalez, Javier T et al. “Ingestion of glucose or sucrose prevents liver but not muscle glycogen depletion during prolonged endurance-type exercise in trained cyclists.” American journal of physiology. Endocrinology and metabolism vol. 309,12 (2015): E1032-9. doi:10.1152/ajpendo.00376.2015
  51. Fisher JS. Intramyofibrillar glycogen drives endurance exercise capacity. J Physiol. 2020 Oct;598(19):4145-4146. doi: 10.1113/JP280546. Epub 2020 Aug 16. PMID: 32770546.
  52. Muscle Glycogen Metabolism and High‑Intensity ExercisePerformance: A Narrative Review. Jeppe F. Vigh‑Larsen · Niels Ørtenblad · Lawrence L. Spriet · Kristian Overgaard · Magni Mohr. Sports Medicine. Published online 26 April 2021.
  53. Jauch-Chara K, Hallschmid M, Gais S, Oltmanns KM, Peters A, Born J, Schultes B. Awakening and counterregulatory response to hypoglycemia during early and late sleep. Diabetes. 10.2337/db07-0044. Epub 2007 Mar 30. PMID: 17400929. 2007 Jul;56(7):1938-42.
  54. Stellingwerff, T., Heikura, I.A., Meeusen, R. et al. Overtraining Syndrome (OTS) and Relative Energy Deficiency in Sport (RED-S): Shared Pathways, Symptoms and Complexities. Sports Med (2021).
  55. Page KA, Seo D, Belfort-DeAguiar R, Lacadie C, Dzuira J, Naik S, Amarnath S, Constable RT, Sherwin RS, Sinha R. Circulating glucose levels modulate neural control of desire for high-calorie foods in humans. J Clin Invest. 2011 Oct;121(10):4161-9. doi: 10.1172/JCI57873. Epub 2011 Sep 19. PMID: 21926468; PMCID: PMC3195474.
  56. NYBO, LARS CNS Fatigue and Prolonged Exercise: Effect of Glucose Supplementation, Medicine & Science in Sports & Exercise: April 2003 - Volume 35 - Issue 4 - p 589-594 doi: 10.1249/01.MSS.0000058433.85789.66
  57. J J Larsen, J M Hansen, N V Olsen, H Galbo, and F Dela. The effect of altitude hypoxia on glucose homeostasis in men. The Journal of Physiology. Published October 1997.
  58. Oscar Castillo, Orison O Woolcott, Elizabeth Gonzales, Victoria Tello, Lida Tello, Carmen Villarreal, Nicolás Méndez, Lucy Damas, Edgar Florentini. Residents at High Altitude Show a Lower Glucose Profile Than Sea-Level Residents Throughout 12-Hour Blood Continuous Monitoring High Altitude Medicine & Biology. Published 2007.
  59. Neil E Hill, Kevin Deighton, Jamie Matu, Shivani Misra, Nick S Oliver, Carrie Newman, Adrian Mellor, John O’Hara, and David Woods. Continuous Glucose Monitoring at High Altitude— Effects on Glucose Homeostasis. Medicine & Science in Sports & Exercise Published February 2018.
  60. Jovanovic, A., Leverton, E., Solanky, B., Ravikumar, B., Snaar, J. E. M., Morris, P. G., & Taylor, R. (2009). The second-meal phenomenon is associated with enhanced muscle glycogen storage in humans. Clinical Science, 117(3), 119–127. doi:10.1042/cs20080542
  61. Jovanovic A, Gerrard J, Taylor R. The second-meal phenomenon in type 2 diabetes. Diabetes Care. 2009;32(7):1199-1201. doi:10.2337/dc08-2196
  62. Staub H. Examination of sugar metabolisms in humans. Z Klin Med 1921;91:44–8.
  63. Traugott K. In reference to the reactions of blood sugar levels in repeated and varied types of enteral sugar increases and their significance in liver function. Klin Wochenschr 1922;1:892–4.
  64. Takafumi Ando, Satoshi Nakae, Chiyoko Usui, Eiichi Yoshimura, Nobuo Nishi, Hidemi Takimoto, Shigeho Tanaka, Effect of diurnal variations in the carbohydrate and fat composition of meals on postprandial glycemic response in healthy adults: a novel insight for the second-meal phenomenon, The American Journal of Clinical Nutrition, Volume 108, Issue 2, August 2018, Pages 332–342,
  65. Ogata H, Hatamoto Y, Goto Y, Tajiri E, Yoshimura E, Kiyono K, Uehara Y, Kawanaka K, Omi N, Tanaka H. Association between breakfast skipping and postprandial hyperglycemia after lunch in healthy young individuals. Br J Nutr. 2019 Aug 28;122(4):431-440. doi: 10.1017/S0007114519001235. PMID: 31486356.
  66. Brighenti F, Benini L, Del Rio D, Casiraghi C, Pellegrini N, Scazzina F, Jenkins DJ, Vantini I. Colonic fermentation of indigestible carbohydrates contributes to the second-meal effect. Am J Clin Nutr. 2006 Apr;83(4):817-22. doi: 10.1093/ajcn/83.4.817. PMID: 16600933.
  67. Park YM, Heden TD, Liu Y, Nyhoff LM, Thyfault JP, Leidy HJ, Kanaley JA. A high-protein breakfast induces greater insulin and glucose-dependent insulinotropic peptide responses to a subsequent lunch meal in individuals with type 2 diabetes. J Nutr. 2015 Mar;145(3):452-8. doi: 10.3945/jn.114.202549. Epub 2014 Dec 24. PMID: 25733459; PMCID: PMC6619673.
  68. Meng H, Matthan NR, Ausman LM, Lichtenstein AH. Effect of prior meal macronutrient composition on postprandial glycemic responses and glycemic index and glycemic load value determinations. Am J Clin Nutr. 2017;106(5):1246-1256. doi:10.3945/ajcn.117.162727
  69. raham TE. Caffeine and exercise: metabolism, endurance and performance. Sports Med. 2001;31(11):785-807. doi: 10.2165/00007256-200131110-00002. PMID: 11583104.
  70. Institute of Medicine (US) Committee on Military Nutrition Research. Caffeine for the Sustainment of Mental Task Performance: Formulations for Military Operations. Washington (DC): National Academies Press (US); 2001. 2, Pharmacology of Caffeine. Available from:
  71. Goldstein, E.R.; Ziegenfuss, T.; Kalman, D.; Kreider, R.; Campbell, B.; Wilborn, C.; Taylor, L.; Willoughby, D.; Stout, J.; Graves, B.S.; et al. International Society of Sports Nutrition Position Stand: Caffeine and Performance. J. Int. Soc. Sports Nutr. 2010, 7, 5
  72. Ivy, J.L.; Costill, D.L.; Fink, W.J.; Lower, R.W. Influence of Caffeine and Carbohydrate Feedings on Endurance Performance. Med. Sci. Sports 1979, 11, 6–11.Yeo SE, Jentjens RL, Wallis GA, Jeukendrup AE. Caffeine increases exogenous carbohydrate oxidation during exercise. J Appl Physiol (1985). 2005 Sep;99(3):844-50. doi: 10.1152/japplphysiol.00170.2005. Epub 2005 Apr 14. PMID: 15831802.
  73. Shi, X., Xue, W., Liang, S. et al. Acute caffeine ingestion reduces insulin sensitivity in healthy subjects: a systematic review and meta-analysis. Nutr J 15, 103 (2016).
  74. Loureiro LMR, Reis CEG, da Costa THM. Effects of Coffee Components on Muscle Glycogen Recovery: A Systematic Review. Int J Sport Nutr Exerc Metab. 2018 May 1;28(3):284-293. doi: 10.1123/ijsnem.2017-0342. Epub 2018 Jun 12. PMID: 29345166.